
Abstract

Power consumption, performance, area, and cost are
critical concerns in designing microprocessors for embed-
ded systems such as portable handheld computing and per-
sonal telecommunication devices. In previous work [1], we
introduced the concept of framework-based instruction-set
tuning synthesis (FITS), which is a new instruction synthesis
paradigm that falls between a general-purpose embedded
processor and a synthesized application specific processor
(ASP). We address these design constraints through FITS by
improving the code density. A FITS processor improves code
density by tailoring the instruction set to the requirement of
a target application to reduce the code size. This is achieved
by replacing the fixed instruction and register decoding of
general purpose embedded processor with programmable
decoders that can achieve ASP performance, low power
consumption, and compact chip area with the fabrication
advantages of a mass produced single chip solution to
amortize the cost. Instruction cache has been recognized as
one of the most predominant source of power dissipation in
a microprocessor. For instance, in Intel’s StrongARM pro-
cessor, 27% of total chip power loss goes into the instruc-
tion cache [2]. In this paper, we demonstrate how FITS can
be applied to improve the instruction cache power effi-
ciency. Experimental results show that our synthesized
instruction sets result in significant power reduction in the
instruction cache compared to ARM instructions. For 21
benchmarks from the MiBench suite [3], our simulation
results indicate on average: a 49.4% saving for switching
power; a 43.9% saving for internal power; a 14.9% saving
for leakage power; a 46.6% saving for total cache power
with up to 60.3% saving for peak power.

1.  Introduction

Power consumption is now a leading design constraint
in microprocessor designs, especially in low-end embedded
system market [4]. In addition to costly heat removal
expense, excessive power consumption in embedded
devices also reduces the battery lifetime. As a result, the
quality and reliability of an embedded device would be

severely compromised by high power dissipation. With bat-
tery power density increasing only at a rate of approxi-
mately 5% per year, any significant extension of battery
lifetime must come from a thorough improvement of energy
efficiency for each power-hungry component in a system.
Memory structures, such as caches, register files, TLBs,
BTBs, etc., are by far the most predominant source of power
dissipation on the processor. For instance, in Intel’s Stron-
gARM® processor, caches consume more than 40% of total
chip power with 27% being devoted to the instruction cache
[2]. This paper presents a novel instruction synthesis tech-
nique that could reduce significant instruction cache power
loss.

In recent years, embedded systems have received
increased attention due to the rapid market growth for high-
performance portable devices such as phones, PDAs and
d ig i t a l  c amera s ,  MP3  p laye r s ,  mob i l e  pe r sona l
communicators. These applications require more instruction
throughput while retaining strict limits on cost, power
dissipation, code size, etc. This necessitates a new system
architecture that can exploit the special characteristics of
these embedded applications to meet the ever-tighter
constraints of time, budgets, and technology. 

An emerging popular strategy to meet the challenging
cost, performance, and power demands is to move away
from general-purpose designs to application-specific
designs. An application-specific processor (ASP) is a
processor designed for a particular application or a set of
applications that share many common characteristics. Thus,
an ASP design contains only those capabilities necessary to
execute its target workloads. The result is that ASPs can
achieve levels of performance and efficiency that are
unattainable in general-purpose processors, as shown in
[5][6]. 

With the wide-spread use of Intellectual Property (IP)
cores and the development of configurable processors and
tools, customized instruction set synthesis has become
feasible to better differentiate products in today's
competitive markets [7]. For embedded systems, especially
for portable handhelds, performance, power dissipation,
chip area, cost, and time to market are often the most
important design constraints to be considered. Designers for
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contemporary 32-bit systems are struggling to achieve even
the minimal satisfactory balance between these factors.

In this paper, we present a cost-effective Framework-
based Instruction-set Tuning Synthesis (FITS) technique for
designing embedded ASPs. FITS offers a tunable, general-
purpose processor solution to meet the code size, perfor-
mance, and time to market constraints with minimal impact
on area. FITS delays instruction set synthesis until after
processor fabrication. Post fabrication synthesis is
performed by replacing the fixed instruction and register
access decoder of conventional designs with programmable
decoders. Through the programmable decoders, we can
optimize the instruction encoding, address modes, and
operand  and  immedia te  b i t  w id ths  to  ma tch  the
requirements of the target application. FITS is cost-effective
in that: (1) it reduces the code size by synthesizing 16-bit
ISAs with minimal performance degradation for many
embedded applications that would normally require 32-bit
ISAs; (2) it reduces power consumption by requiring a
smaller on-chip cache and by deactivating those parts of the
datapath that are not mapped to any instructions of the
synthesized architecture; (3) it reduces cost and time to
market for new products by utilizing a single processor
platform across a wide range of applications, while retaining
the ability to optimize the instruction set and register
organization for the specific needs of each application. The
datapath of a FITS processor would be similar to a general-
purpose embedded processor such as ARM, containing a
full range of functions, but would map only a subset of those
to the synthesized instruction set. By only mapping those
operations that a particular application needs to the
synthesized instruction set, it is possible to encode all
instructions in a short, 16-bit format while retaining all of
the special purpose operations that can be found in a large
instruction embedded processor.

The remainder of this paper is organized as follows:
Section 2 describes related work in instruction set synthesis
for embedded systems. Section 3 presents the FITS design
methodology and architectural innovations. Section 4 and 5
explain the power modeling tools used in this study and the
simulation environment. Section 6 presents the simulation
results and provides detailed analyses for the benefits in
power consumption, performance, and code size. We con-
clude and discuss the future work in Section 7.

2.  Related Work
The instruction cache has been recognized as a major

source of power consumption in embedded systems. Several
techniques that address this issue focus on code compres-
sion [8][9]. The main observation is that a subset of the ISA
is used for programs so the most commonly executed
instructions are compressed to reduce the power dissipated
in the memory hierarchy and buses. In [10], Kadri et al.
evaluated the effect of code compression on power con-
sumption. They use the dictionary-based software decom-

pression method based on IBM’s CodePack technique [11]
used in the IBM PowerPC microprocessors [12]. They con-
cluded that both execution time performance and power
consumption are very sensitive to the level one instruction
cache size. They also observed that the performance and
power consumption overhead due to software-based dictio-
nary compression is insignificant.

In the recent years, many embedded processor architec-
tures introduced are manually customizable. The Xtensa
[13] is a customizable embedded RISC processor, which
consists of a basic set of instructions that exists in all Xtensa
implementations plus a set of configurable and extensible
options. The designer has the ability to choose from optional
functional units, memory interfaces, and peripherals. User-
defined instructions are also supported using RTL. Similar
configurability and extensibility also exist in embedded
VLIW cores as seen in the Lx [14]. The customization of
processor to an application domain emerges as a compro-
mise between the fast but inflexible ASIC and the flexible
but slow FPGA. 

Dual instruction set processors, such as Thumb [15],
Thumb-2 [16], MIPS16 [17], ST100 [18], and ARCtangent-
A5 [19], have been proposed to reduce power dissipation by
improving the code density. These dual instruction set
designs address the limited memory and energy constraints
by supporting a 16-bit instruction set along with the 32-bit
instruction set. The 16-bit instruction provides a subset of
the functionality of the 32-bit instruction set to trade off the
execution time for smaller memory footprint and better
power consumption. Since the 16-bit ISA along cannot give
the performance desired, designers need to keep the 32-bit
version for the performance reason.

Our approach is different from others in that we believe
that a 16-bit ISA can accommodate the requirements of
almost all embedded applications without the support of
some larger instructions. However, applications may not
require the same set of instructions, so we propose an
architecture with the full range of functional capabilities
found in a 32-bit embedded processor, but only map a
subset of instructions that a particular program needs to the
16-bit instruction format. Thus, rather than starting with a
32-bit ISA and looking for places to partially substitute it
with its 16-bit counterpart, we move straight into the single
16-bit ISA scheme and utilize an instruction encoding
synthesized to the requirements of each application.

3.  Synthesis Framework
This section describes the FITS design approach and

the framework that supports it. The basic philosophy of
FITS is that high performance and high code density can
both be achieved if we can match the instruction set to the
requirement of a target application. FITS improves code
density by adopting 16-bit instruction set instead of the con-
ventional 32-bit. Since the instruction width is reduced by
half, the total code size can be reduced by half as long as



what was originally done in a single 32-bit instruction can
also be done in a single 16-bit instruction. In the later sec-
tion, we will show that FITS indeed can achieve a code size
reduction that is close to 50%. FITS does not trade off per-
formance for code density. Through application-specific
customization, FITS can achieve high performance using
only 16-bit wide instructions. To best utilize the half-sized
instruction width, the instruction space is allocated to only
those operations that are necessary and useful to the given
application. As a result, we can have a design that has the
best part of both worlds: a 16-bit dense code that can
achieve the 32-bit high performance.

3.1.  FITS Methodology

FITS is an application-specific hardware software co-
design approach that matches microarchitectural resources
to application performance needs, while improving code-
density. FITS does application-specific customization at the
instruction set level utilizing programmable decoders for
instruction decode and register access. A FITS processor
consists of a fairly large set of functional units, including
standard ALU operations as well as a set of other useful
instructions (e.g. Multiply/accumulate, looping instructions,
etc.). Limitations on the functions provided are due to chip
area goals, not instruction set size limits. This can greatly
increase the number of similar operations, such as saturating
add, because the additional circuitry to add saturation to an
add operation is minimal. Since instruction space encoding
is decoupled, it is possible to add many instructions that
may only be useful to a small subset of applications. With a
programmable decoder, FITS can tune an ISA to include
only those operations necessary for a single application.
Moreover, FITS is extremely flexible in terms of the range

of underlying microarchitecture that it can work with: from
general-purpose DSPs or embedded processors such as
ARM to application-specific customized data-path. FITS
provides the same level of customization as many ASPs,
trading somewhat greater chip area requirements for
eliminating the need to synthesize a new chip for each
application.

To tune a FITS processor, a FITS aware compiler
analyzes the instruction and register requirements of an
application, before instruction selection and register
allocation. We currently use profile information, but we are
exploring new optimization heuristics using static dataflow
information to perform the code transformation. Once code
generation is complete, the compiler can specify the register
organization and instruction decoding to perform for the
application. This configuration information is then
downloaded to a non-volatile state in the FITS processor. At
this point, the processor instruction set and register file
organization is complete. If this application is later
upgraded with increased functionality, FITS can re-
configure the decoders to match the new requirements of the
application. In general, FITS can transform any general-
purpose machine into an application-specific processor
platform with over-provisioned resources that can be
dynamically configured to adept to the needs of different
applications.

3.2.  System Design Flow

The system design flow of FITS is consisted of five
stages: profile, synthesize, compile, configure, and execute.
As illustrated in Figure 1, the target application is first ana-
lyzed by the FITS profiler to extract its characteristics. The
output of the profile stage is a list of extensive requirement
analysis related to each element that makes up an instruction
set, such as opcode field, operand field, immediate field,
and register pressure. After gathering the profiling informa-
tion, FITS uses this information as a guideline to synthesize
an appropriate instruction set that will satisfy the require-
ments of the application. This is the stage where the instruc-
tion selection and encoding take place. When the instruction
synthesis finishes, the definition of a complete ISA is
formed. The FITS compiler would then take the instruction
set definition to compile the given application into a 16-bit
FITS binary. 

When the code generation is completed, the program-
mable decoder is configured using the instruction decoding
and register organization specified by the compiler. Any
unused datapaths are turned off at this stage to save power
consumption. Once everything completes successfully, we
execute the FITS binary on a FITS processor. If all of the
requirements are met, a cost-effective solution has been pro-
duced. Otherwise, we go back to the synthesize stage and
repeat the process again.

Figure 1: FITS System Design Flow
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3.3.  Synthesis Heuristic

The compiler must make tradeoffs in the instruction
selection phase of optimization. This may include software
emulation of rarely used instructions. In almost all cases the
instruction set mapping includes a Base Instruction Set
(BIS) and a Supplemental Instruction Set (SIS). A BIS
includes instructions found across all applications (e.g.
branch, compare, add, etc.); a SIS includes instructions
required to make the instruction set Turing-complete
[20][21]. The BIS and SIS together contain enough
functionality to simulate any instructions not mapped for an
application. BIS and SIS are generated differently and sepa-
rately during the instruction selection phase. For clarity pur-
pose, they are separated into two different instruction sets;
even we include both them in all applications.

In addition to the BIS and SIS instructions, FITS will
include a set of application specific instructions (taken from
the set of functional units in the microarchitecture)
necessary for the application to meet any performance
goals. The application-specific instruction set (AIS) is
determined by evaluating the performance of various 16-bit
encoding methods. Register allocation is also designed to
trade off the register file size and encoding with register
spill frequency. 

To improve the operand space utilization, FITS uses the
two operand version of an instruction, say add, when almost
all of the uses of the instruction can be done with two
operands without requiring an additional move, provided
there is a register space, and three operand otherwise. FITS
can mix and match these two address modes, so that some
instructions have two operands and some have three, as long
as any two operand definition that has a three operand use is
in the part of the register file that can be read by the three
operand instructions. Since there is only one address mode
for each instruction, there is no need of extra opcode bit to
indicate mode switch.

Since the space requirements for different categories of
immediates demonstrate distinctive trends, it makes sense to
partition the immediate synthesis problem into three sub-
categories and perform a category-based synthesis
accordingly. FITS adopts an utilization-based technique to
encode the immediate operand space. FITS identifies the
most frequently accessed immediates and places them them
in programmable, non-volatile memory storage, replacing

the instruction immediate with an index into the immediate
storage. This is similar to the dictionary compression
method in [22] except:  (1)  FITS can dynamically
reconfigure the total immediate field width and adjust
widths of other instruction fields accordingly to best reflect
the application's requirements, and (2) FITS targets the
immedaite fields only rather than a whole instruction.

3.4.  FITS Instruction Formats

FITS instructions are all 16 bits in various different
instruction formats specifying 0, 1, 2, or 3 register fields.
Generally speaking, all FITS ISAs have four basic instruc-
tion categories: operate, memory, branch, and trap. The
details of the instruction format may vary, depending on the
needs of the target application. For the illustration purpose,
Figure 2 included an example instruction formats used by
the CRC32 program from the MiBench Telecommunication
benchmark group.

The Operate instructions are used for data processing
such as arithmetic, compare, logical. They use a source reg-
ister RA and a source operand OPRD, writing result register
RC. For three-operand instructions, the OPRD field can be
either a register specifier or an immediate value, depending
on the addressing mode. For two-operand instructions, the
OPRD field can be combined with RA to specify an 8-bit
zero-extended literal. The Memory instructions move data
between register RA and memory, using RB plus a displace-
ment indicated by the IMM field as the memory address.
The Branch instructions change the program control flow to
the target specified by the sum of 12-bit DISP offset and the
PC. Subroutine calls put the return address in the register
specified by the first four bits of DISP field. The Trap
instructions perform interrupts, exceptions, task switching,
and other complex operations that must be done atomically.

4.  Power Modeling
Power dissipation is becoming a critical concern for

semiconductor industry. If current design trends continue, a
typical microprocessor will consume 50 times more power
than that can be supported by cost-effective packaging tech-
niques by 2016 [23]. Clearly, power has become one of the
most serious design constraints in today’s process genera-
tions. To help illustrate how FITS addresses this issue, this
section describes the power metrics and modeling tool that
were used to measure the power dissipation results pre-
sented in the Section 5.

4.1.  Power Metrics

In CMOS logic circuits, the overall power consumption
is defined as the sum of dynamic power and static power
consumption [24]:

(1)

Figure 2: Sample Instruction Formats
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The first term models the dynamic power caused by the
charging and discharging of the capacitive load on the out-
put of each logic gate: A is the fraction of gates actively
switching; C is the total capacitance load of all gates; V is
the supply voltage; f is the system operating frequency. The
second term measures the static power lost due to leakage
current, . We ignore the short circuit power caused
by the momentary short circuit current at a gate’s output
whenever the gate switches. The reason is its relatively
small contribution to the dynamic power and can thus be
absorbed by the dynamic power, if necessary. In addition to
dynamic power and static power, peak power is relevant
because exceeding an upper power limit imposed by a sys-
tem will lead to circuit damage. Reduction in peak power
may also help reduce the di/dt noise, an inductive effect
caused by sharp changes in power consumption which can
result in circuit malfunction.

Dynamic power loss is activity based because it is
directly related to the toggling frequency of the gates in the
circuit. The leakage power, on the other hand, is unaffected
by activity since it is governed only by the number of gates
and their threshold voltages. The only time that leakage can
be reduced to zero is when the gates are turned off. There-
fore, these power characteristics imply that: given the same
C and V, smaller logic block that completes a task faster
could save both dynamic and static powers. As it will be
shown in the later section, this is exactly how FITS optimi-
zation achieves power savings for an instruction cache.

4.2.  Power Modeling Tool

It is very difficult to model power consumption of a
system at the architectural level. A natural solution is to
build a power estimator into the cycle simulators. However
as [25] pointed out, cycle simulators intentionally omit con-
siderable implementation detail to speed up simulation
speed. The challenge is to select the necessary details that
must be put back in to produce accurate power figures. 

In this paper, we used a modified version of the “sim-
panalyzer” [26] to run power modeling simulation for our
experiments. “sim-panalyzer” is an infrastructure for
microarchitectural power simulation at the architectural
level. It is built on top of SimpleScalar-ARM simulator [27].
“sim-panalyzer” measures power consumption by tying
cycle accurate behavior to activity at the gate level for
obtaining the dynamic power and to estimate the number of
gates that the microarchitecture requires for obtaining the
static power. Specifically, “sim-panalyzer” computes the
power dissipation with the switching capacitance multiplied
by the number of microarchitectural accesses. It uses the
logic simulator to collect the number of gate switching in
each internal node of the target circuit on the fly, and the
capacitance extractor to estimate the switching capacitance
of each node. The chip-wide power dissipation breakdown
given by the simulator is compliant with that of an actual
fabricated StrongARM® design [2].

5.  Experiments
To do an analysis of power consumption and perfor-

mance evaluation, four different processor configurations
were simulated with “sim-panalyzer.” A representative sub-
set of the MiBench suite [3] is compiled into the ARM
binary using the GCC tool chain [28]. To clearly demon-
strate the effectiveness of FITS in reducing instruction
cache power dissipation, we restrict the experiment to only
allow a single controlled variable: instruction cache size.
There are two different instruction cache sizes: 16 Kb or 8
Kb. For simplicity, simulations of the original ARM code
with a 16 Kb and an 8 Kb instruction cache are abbreviated
as ARM16 and ARM8 respectively; likewise, simulations of
the FITS-optimized code with a 16 Kb and an 8 Kb instruc-
tion cache is abbreviated as FITS16 and FITS8 respectively.
The rest of the microarchitecture remained the same and
was modeled after Intel’s SA-1100 StrongARM® embedded
microprocessors [29]. 

We ran full simulation on all compatible benchmarks to
their completions without skipping any instructions. Up to
approximately 1 billion dynamic instructions were simu-
lated for all benchmarks. Due to compatibility issues
between the MiBench and the simulator, basicmath and
gsm.encode are dropped from the power dissipation study
and gsm.decode was thus renamed to gsm accordingly.

6.  Results and Analysis
We evaluated the effectiveness of FITS using the fol-

lowing metrics: instruction mapping rate, code size saving,
power reduction, and performance measurement. Metrics
are presented in a progressively order so any cause-effect
relationships could be established and clearly seen.

6.1.  Instruction Mapping Coverage

In order for FITS to demonstrate any noticeable power
and code size benefits, enough one-to-one translations must
be made from the native 32-bit ARM instructions to the
optimized 16-bit FITS instructions. The insights gained
from the embedded workload analysis in [1] inspire us with
high potential and plentiful opportunities in FITS. This sec-
tion demonstrates the reality of FITS with its promisingly
high one-to-one correspondence to ARM: a 96% average of
static mapping and a 98% average dynamic mapping, as
shown in Figure 3 and Figure 4. Higher static mapping gives
us smaller code size and fewer cache misses. Higher
dynamic mapping means greater power reduction and faster
execution. The mapping is determined to be one-to-one if
there was a FITS instruction that could achieve the same
result as an ARM instruction. Otherwise, a one-to-n map-
ping, where n > 1, is determined when we had to translate
this ARM instruction into multiple FITS instructions. In the-
ory, n could be any number ranging from 2 to 4; however, in
practice, n = 2 is almost always the case.

Ileak



6.2.  Code Size Benefits

Figure 5 compares the program code density achieved
by different code generations, namely, ARM, THUMB, and
FITS. The FITS bars represent the program code size after
the ARM-to-FITS translation. The ARM and THUMB bars
represent the program code size compiled in pure 32-bit
ARM and 16-bit THUMB respectively: there was no ARM-
THUMB intermixing. Since we do not plan to intermix
ARM and FITS together, a better baseline for FITS to com-
pare against should be the pure 16-bit THUMB. We normal-
ized everything with respect to ARM in order to show the
code size savings that THUMB and FITS each achieves in
terms of percentages. On average, THUMB reduced
approximately 33% of ARM code across the entire bench-
mark suite. On the other hand, FITS was able to reduce the
ARM code by almost an half: on average, 47% of total
ARM segment could be eliminated. The reason for THUMB
not being able to achieve as much code size savings as FITS
does is because THUMB is not able to utilize its instruction
fields efficiently. 

Like most general-purpose ISAs, THUMB supports a
wide range of instructions in order to be able to specify lots

of applications. However, this general-purpose capability
requires more opcode space and makes the other instruction
fields, such as register and immediate operands, smaller.
When the register operand width is reduced, the processor
can specify less architect registers and thus increasing the
register pressure. Higher register pressure causes more spill-
ings and thus increasing the number of memory references
in the program. This is a reason why THUMB is not able to
achieve the level of code size savings that FITS gives.

This code size saving achieved by FITS does not come
at expense of performance lost as illustrated by the perfor-
mance results later. This is mainly due to the following two
reasons. First and foremost, FITS aggressively optimized
and adopted the utilization-driven synthesis heuristic which
makes it very effective in determining the target instructions
for synthesis without any noticeable performance lost. Sec-
ond, the resultant half-sized FITS code effectively makes
the L1 instruction cache almost twice as large as before.
Thus, the FITS execution core was able to take advantage of
higher spatial locality exhibited to largely raise the cache hit
rate, and so does the overall execution speed.

6.3.  Power Dissipation Benefits

The best way to reduce overall chip power dissipation
is to attack each of the microarchitectural components using
power. In this paper, we focus on attacking instruction cache
power consumption. We start by showing the breakdown of
instruction cache power for each of the four processors
under simulation. Next, we present the power reduction that
FITS is able to achieve in each of the component powers:
switching, internal, leakage, and peak powers. The reduc-
tion of each component power is then translated into the
total instruction cache power reduction. Finally, the instruc-
tion cache power savings is mapped into the corresponding
overall chip-wide power saving.

As mentioned in the section 5, we model only dynamic
and static power dissipation. The dynamic power was fur-
ther broken down into switching power and internal power
to better facilitate monitoring power reduction by FITS. The

Figure 3: ARM-to-FITS Static Mapping Figure 4: ARM-to-FITS Dynamic Mapping
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Figure 5: Code Size Footprint
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switching power is the power consumed by the output driver
and its output load capacitance of the instruction cache
microarchitecture. The internal power is the dynamic power
of the instruction cache microarchitecture itself. Therefore,
the switching power is sensitive to the power consumed by
the amount of output data during each cache access, or
switch. On the other hand, the internal power is sensitive to
the overall power consumed by the entire cache logic block
when it is on; hence it is highly dependent upon the total
size of the cache. The static power, or leakage power, is sen-
sitive to the power lost due to leakage current of each gate
of cache logic block; thus it is also dependent upon the total
size of the cache. The peak power depends both on the
microarchitectural configuration of a cache, such as block
size and total cache size, as well as the characteristics of the
instruction address stream from each individual cache
access.

Energy savings in both instruction cache and system
chip could be directly inferred from the corresponding
power reduction; hence they are not explicitly shown here.
The validity of this energy saving inference comes from the
fact that all four processors run at a fixed 200 MHz operat-
ing frequency and the differences among their simulation

times were not significant. Since energy is the product of
power and time, with negligible difference in the time com-
ponent, the ratio of energy saving would roughly have iden-
tical distribution as the ratio of power saving.

6.3.1.  Instruction Cache Power Breakdown

From the instruction cache power breakdown, the fol-
lowing power usage trends are noticed. First, the total
instruction cache power is dominated by the dynamic
power, i.e. the switching power plus the internal power. This
is expected since SA-1100 is a relatively low-end embedded
microprocessor built with less aggressive fabrication tech-
nologies (e.g. 0.35µm), we would not encounter the same
level of leakage current problem found on current state-of-
the-art high-end designs fabricated with deeper sub-micron
technology. 

Second, as the size of the instruction cache increases,
the percentage of switching power goes down; the percent-
age of internal power goes up; the percentage of leakage
power remains approximately the same. The reason is larger
cache consists of more gates and thus more internal and
leakage power. In addition, given the same cache block size
and associativity, larger cache would yield better hit rate,

Figure 6: I-Cache Power Breakdown
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(a) ARM 8Kb I-Cache (b) ARM 16Kb I-Cache

(c) FITS 8Kb I-Cache
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(d) FITS 16Kb I-Cache
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which means less gate switches and the switching power is
reduced.

Third, with the cache size being equal FITS uses lower
percentage of switching power, higher percentage of inter-
nal power, and approximately the same percentage of leak-
age. The leakage power percentage stays unchanged
because same sized caches have same number of gates. The
reduction of switching power percentage is due to the
increased cache hit rate of FITS-sized code. Since the cache
size is the same, the increase of internal power percentage is
due to the normalization effect after accounting for the
reduction of switching power percentage.

Last, if we compare the switching power percentage
between Figure 6(a) to Figure 6(b) and Figure 6(a) to Figure
6(c), we will find that applying FITS transformation reduces
more switching percentage than simply doubling the size of
cache. Considering this with the fact that the FITS reduction

comes solely from the increased cache hit rate as opposed to
the joint effect of increased internal power seen in Figure
6(b), it implies that FITS can reduce switching power more
effectively than doubling the size of the cache. This specula-
tion is confirmed by the instruction cache power saving
analysis that follows.

6.3.2.  Instruction Cache Power Saving

To see how FITS optimizes the power usage of an
instruction cache, it is best to look at the power reduction in
each power component broken down as above. We compare
the power saving from a 16 Kb and an 8 Kb FITS caches
(FITS16 and FITS8) with the default 16 Kb ARM cache in
the SA-1100 core. The 8 Kb ARM cache (ARM8) is
included to show that simply reducing the size of ARM
cache is not going to help us much and we may have to pay
more performance penalty than we can bear.

Figure 7: I-Cache Switching Power Saving Figure 8: I-Cache Internal Power Saving

Figure 9: I-Cache Leakage Power Saving Figure 10: I-Cache Peak Power Saving
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Figure 11: Total I-Cache Power Saving Figure 12: Total Chip Power Saving
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As speculated in the section of power breakdown analy-
sis, FITS-sized codes benefit greatly from switching power
reduction. This is the power saving that clearly distinguishes
a FITS-optimized cache from a normal ARM cache. As
shown in Figure 7, both FITS16 and FIT8 save approxi-
mately 50% cache switching power while ARM8 saves vir-
tually none. The switching power saving of FITS is a result
of better cache hit rate due to better spatial locality that
FITS-sized codes exhibit. On the other hand, ARM8 con-
sumed as much overall switching power as the baseline 16
Kb cache indicates the overall gate switching frequencies of
the two caches are essentially the same.

For the internal and leakage powers in Figure 8 and
Figure 9, the two half-sized caches, FITS8 and ARM8, dem-
onstrate nontrivial savings in most applications. This is
because both internal and leakage powers are directly pro-
portional to the number of gates given the same operational
period. For the leakage power; however, exceptions occur
for some applications where FITS8 or even FITS16 shows
greater savings than ARM8. This is because the saving of
smaller amount of logic gates in ARM8 were compromised
or even wiped out by its longer operational period due to
larger cache miss rates. This effect was hidden in the inter-
nal power results because internal power contributes to
more than half of the total cache power in all four different
cache schemes (see the cache power breakdown); therefore,
the power loss due to longer operational period were simply
absorbed.

The peak power consumption depends on both switch-
ing frequency and amount of logic gates. From Figure 10,
we can observe savings from all three cache schemes: on
average 46% for FITS16, 63% for FITS8, and 31% for
ARM8. Since peak power is sensitive to factors that affect
both the dynamic and the static powers, greater peak power
saving of FITS16 and FITS8 indicate that FITS is a well
balanced low power technique for instruction cache.

 This claim is supported by the overall cache power
consumption results which combine all the component sav-
ings above. As shown in Figure 11, FITS8 gives the highest

47% average total cache power saving followed by ARM8
and FITS16 with each saves 27% and 18% respectively.
Figure 12 shows how these instruction cache power savings
would be translated into the total chip power savings: on
average, 15% total chip power saving for FITS8; 8% for
ARM8; 7% for FITS16.

6.4.  Performance Benefits

To demonstrate that FITS does not save power at the
expense of performance; we include the following perfor-
mance results. Performance is measured in both instruction
cache miss rates and instructions per cycle (IPC). The cache
miss rate analysis helps to explain why simply reducing the
cache size of the default ARM cache does not reduce much
power. The IPC analysis gives an idea of overall FITS per-
formance compared to the ARM. Both results showed that
FITS saves power without compromising performance.
Looking this section together with the power results from
section 7.3, we observe that reducing the regular sized cache
to 8 Kb not only hurts performance as measured by high
miss rates and low IPC, it also just shifts power use. On the
other hand, 8 Kb caches for FITS have no more misses than
16 Kb for ARM.

6.4.1.  Cache Miss Rate

Figure 13 shows the instruction cache miss rates for all
four processor configurations. The miss rate was measured
as misses per one million cache accesses since most of the
benchmarks are easily cacheable due to their small code size
footprint. Values that are too large to be displayed are
marked with their real miss rate numbers on the side. FITS
surpassed ARM with greatly improved cache performance:
the half-sized FITS8 caches have smaller miss rates than the
normal full-sized ARM16 caches. This is due to the better
spatial locality exhibited by FITS-sized code. Since the
instructions are half the size, the cache lines can be viewed
as being twice the size (this operates much like a next line
prefetch on cache miss since twice the number of instruc-
tions are brought into the cache (i.e. fewer compulsory
misses and for displaced lines, fewer conflict misses to
restore the instructions). Moreover, since embedded appli-
cations are typically stream-based, most branches in
MiBench are easily predictable. Therefore, this instruction

Figure 13: Instruction Cache Miss Rate
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Figure 14: Instructions Per Cycle (IPC)



“packing” effect makes FITS caches seem virtually twice as
large as their true physical size.

6.4.2.  Instruction Per Cycle (IPC) Rate

Figure 14 shows the IPC performance measures for all
four processor configurations. Since the SA-1100 simulated
core is a dual-issue, in-order machine, the highest IPC pos-
sible is 2. Overall, the IPC for all four configurations are
satisfactory. This is the result of the easy predictability and
cacheability of MiBench programs. As expected, the IPC
performance of FITS codes is comparable to those native
ARM codes. It is interesting to observe that an 8 Kb FITS
cache could achieve roughly the same IPC as a 16 Kb ARM
cache with only few minor variations. This is a result of
high instruction mapping rates and low cache miss rates.

7.  Conclusions

The goal of this research is to argue for a new approach
to the design of a class of embedded processors that reduces
power and code size, while maintaining satisfactory perfor-
mance. We feel that by delaying the mapping of instruction
set to microarchitecture to a point after chip fabrication, it
will be possible to match the dense coding capabilities of
ASP while retaining the fabrication advantages of a single
chip design. Using the FITS design methodology enables a
cost-effective 16-bit ISA synthesis solution while reducing
des ign  t im e  and  complex i ty,  by  d ecoup l ing  t he
microarchitectural enhancements available on chip from the
encoding issues of mapping to the subset of instructions
required by a single application. Our analysis shows that for
a wide range of embedded applications it is feasible to
utilize a 16-bit instruction format, but that each application
may require a different selection of operations and storage
components. By delaying instruction assignment and
register file organization until a program is loaded, it is
possible to aggressively design the microarchitecture,
including operations that are only occasionally useful,
without the code bloat that would occur on a conventional
machine.
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